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ABSTRACT

Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal

theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are

still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma-beta MHD

turbulence simulations that only vary in their dynamical range, i.e., in their separation between the

large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simula-

tion, ILES, versus and direct numerical simulation, DNS). Using an energy transfer analysis framework

we calculate the effective, numerical viscosities and resistivities and demonstrate and that all ILES

calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD

turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering

the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing

scale. Independently, we use this same framework to demonstrate that – contrary to hydrodynamic

turbulence – the cross-scale energy fluxes are not constant in MHD turbulence. This applies both

to different mediators (such as cascade processes or magnetic tension) for a given dynamical range

as well as to a dependence on the dynamical range itself, which determines the physical properties

of the flow. We do not observe any indication of convergence even at the highest resolution (largest

Reynolds numbers) simulation at 2,0483 cells, calling into question whether an asymptotic regime in

MHD turbulence exists, and, if so, what it looks like.

Keywords: MHD — methods: numerical — turbulence

1. INTRODUCTION

Many astrophysical and terrestrial systems are turbu-

lent and threaded by magnetic fields and as such, the

dynamics in these systems are often described or mod-

eled in the context of magnetohydrodynamic (MHD)

turbulence. Astrophysical examples range from en-

ergy transport in the solar convection zone (Canuto

& Christensen-Dalsgaard 1998; Miesch 2005) to star-

forming molecular clouds (Vázquez-Semadeni 2015; Fal-

garone et al. 2015) to clusters of galaxies (Brunetti &

Jones 2015; Brüggen & Vazza 2015) and angular mo-

mentum transport in accretion disks (Balbus & Hawley

1998). Terrestrial examples include plasma experiments,
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such as laser-produced colliding plasma flows, Z-pinches,

and tokamaks (see, e.g., Tzeferacos et al. 2018; Haines

2011). In the absence of full 4D (spatial plus temporal)

information, observations (astrophysical and laboratory

experiments) often rely on MHD turbulence simulations

to support interpretations. Similarly, numerical simula-

tions are also frequently employed to support the devel-

opment of MHD turbulence theories, which, in turn are

also used to interpret observations. This illustrates the

tight link between experiments/observations, numerical

simulations, and theory.

Figure 1 illustrates some key properties of the canon-

ical (incompressible) hydrodynamic turbulence phe-

nomenology. Energy injected on the largest scales in

a system is transferred conservatively in a self-similar

cascade to smaller and smaller scales until it is dissi-

pated on the smallest scales. On the intermediate range

of scales associated with the cascade the energy spec-
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Figure 1. Illustrative sketches of the energy spectrum (top),
cross-scale energy flux (middle), and absolute rate of change
in energy (bottom) for idealized turbulence. Energy is in-
jected to the system on the largest scales (in our simulations
through a mechanical stochastic forcing process) resulting in
large scale eddies. Phenomenologically, these eddies break up
into smaller and smaller eddies transferring energy to smaller
scales at a constant energy flux on intermediate scales. At
the smallest scales energy is dissipated. In direct numerical
simulations (DNS) the dissipative scales are resolved whereas
in implicit large eddy simulation (ILES) dissipation is nu-
merical in nature. In the stationary regime, the system is in
balance, i.e., the integrated rate of change in energy injected
to the system (bottom left) corresponds to the energy being
dissipated (bottom right).

trum (top panel of Fig. 1) is a power-law with k−5/3

slope and the energy flux across scales (center panel)

is constant. With increasing Reynolds number (Re =

UL/ν & 1,000) this intermediate (inertial) range be-

tween production/injection and dissipation scales, i.e.,

the dynamical range1, becomes more and more extended

1 In this paper, we will use “dynamical range” interchangeably
with kinetic (and magnetic) Reynolds number.

while the spectral slope and energy flux remain con-

stant. This phenomenology is in agreement with theory

(Kolmogorov 1941; Frisch 1995) and has been confirmed

in many experiments (both laboratory and numerical),

e.g., (Ishihara et al. 2016).

While the kinetic energy cascade is the only available

energy transfer channel in incompressible hydrodynamic

turbulence, the situation is significantly more complex

for magnetohydrodynamic turbulence. In MHD turbu-

lence additional channels exist that also allow for a cas-

cade of magnetic energy as well as transfer of energy

between kinetic and magnetic energy budgets, (Alex-

akis et al. 2005; Grete et al. 2017; Verma 2019). This

complication is likely one reason for the lack of a “uni-

versal” theory of MHD turbulence (see Beresnyak 2019;

Schekochihin 2021, for recent reviews) and the existence

of different competing theories, (e.g., for the slope of

the energy spectra, see, e.g. Iroshnikov 1964; Kraichnan

1965; Goldreich & Sridhar 1995; Boldyrev et al. 2009).

For many astrophysical systems (such as the ICM and

black hole accretion disks), direct numerical simulations

(DNS) that resolve from the largest scales in the sys-

tem (cf., top of Fig. 1) down to the (microphysical)

dissipation scale are computationally intractable. Be-

cause of the large (magnetic) Reynolds numbers asso-

ciated with these systems, such astrophysical plasmas

have been traditionally studied using the equations of

ideal MHD, which neglect both viscosity and resistiv-

ity. However, simulations of these systems have been

performed using algorithms that apply artificial dissipa-

tion for stabilization, e.g. historically, the Method-of-

Characteristics Constrained Transport algorithm (Haw-

ley & Stone 1995) and more recently, Godunov-type fi-

nite volume methods (Stone et al. 2008). These choices

firmly place ideal MHD turbulence simulations that uti-

lize these algorithms in the realm of implicit large eddy

simulations (ILES, Grinstein et al. 2007).2 However,

ILES have no intrinsic notion of physical scales (e.g.,

with respect to the dissipative transport coefficients),

which can lead to an expectation that the effective vis-

cosity (and resistivity) depend on the number of grid

points used for the simulation, or alternatively, that the

effective viscosity (and resistivity) is fixed for a given cell

width, ∆x, and does not depend on the physical scales.

In this paper, we examine the physical interpretation

of increasing the separation between the energy injection

scale and the dissipation scale (the ‘dynamical range’)

2 More recently, large eddy simulations that only resolve the largest
scales directly and rely on a model to incorporate effects from
the unresolved scales (e.g. dissipative processes acting on the
smallest scales) have come into use (Sagaut 2006; Schmidt 2015).
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in implicit large eddy simulations of ideal magnetohy-

drodynamic turbulence. This is accomplished through

the analysis of a series of ILES calculations of magneto-

hydrodynamic turbulence where we systematically vary

the dynamical range and study the response of both the

scale-wise distribution of energy and the physical mech-

anisms by which energy is transferred between scales in

the turbulence. Based on this analysis, we demonstrate

that, for the choice of magnetic field topology and nu-

merical scheme considered here, the separation between

the energy injection scale and the dissipation scale of

ILES calculations of MHD turbulence determines the

gross energetics of the flow. Through analysis of the

dissipation mechanisms present in the calculations, we

further demonstrate that the properties of ILES calcu-

lations of MHD turbulence accurately reproduces those

of DNS calculations of visco-resistive MHD turbulence

where the dissipation scale is well-resolved. The com-

bination of these two results leads us to the conclusion

that all ILES calculations of MHD turbulence are re-

solved and correspond to an equivalent DNS calculation

of visco-resistive MHD turbulence for a specific combi-

nation of magnetic field topology, energy injection scale

and dissipation coefficients. As a consequence, increas-

ing the number of grid points used in an ILES calcula-

tion of MHD turbulence increases both the dynamical

range of the calculation and also the effective (magnetic)

Reynolds number. For ILES calculations of MHD tur-

bulence therefore, a correspondence exists between dy-

namical range and effective (magnetic) Reynolds num-

ber and as such, increasing the dynamical range allows

study of the asymptotic properties of MHD turbulence

with (magnetic) Reynolds number.

The rest of this paper is organized as follows. In § 2,

we describe the details of the MHD turbulence simula-

tions performed here and the energy transfer analysis

analysis framework used to post-process the data. In

§ 3, we describe the energetic properties of the simu-

lations, subsequent to which, we compare properties of

the dissipation in the ILES and DNS simulations in § 4.

Finally, we summarize the key results of this work, draw

conclusions and point the way to future work in § 5.

2. NUMERICAL DETAILS

In total, we conduct 10 driven, magnetized turbu-

lence simulations with K-Athena3 (Grete et al. 2021) in

the subsonic super-Alfvénic regime with varying resolu-

3 K-Athena is a performance portable version of Athena++ using
Kokkos (Edwards et al. 2014; Trott et al. 2022). It is available
at https://gitlab.com/pgrete/kathena and commit e5faee49 was
used in this work.

tion, forcing scale, and dissipation mechanism (explicit

and implicit). All simulation use a second-order finite

volume scheme consisting of a predictor-corrector Van

Leer-type integrator, HLLD Riemann solver, piecewise

linear reconstruction in the primitive variables, and con-

strained transport to ensure the divergence-free condi-

tion of the magnetic field (Stone & Gardiner 2009). The

simulations are approximately isothermal using an ideal

equation of state for a perfect gas with an adiabatic

index of γ = 1.0001. We use a mechanical, stochas-

tic forcing mechanism that evolves in space and time

prescribed by an Ornstein-Uhlenbeck process (Schmidt

et al. 2009; Grete et al. 2018). The acceleration field has

an inverse parabolic shape in spectral space with a peak

at the characteristic forcing wavenumber kf , an autocor-

relation time that corresponds to a large eddy turnover

time, and a fixed power (i.e., the root mean square accel-

eration field is constant in each simulation). Each simu-

lation starts with a weak magnetic field field configured

as an axis aligned cylinder with radius 0.4Lbox so that

no field lines cross the triple periodic box. Thus, the

initial field configuration corresponds to a “no-net-flux”

scenario, or, in other words, there is no large scale mean

field in our simulations. All simulations evolve for 10

large-scale eddy turnover times and we collect statistics

in the stationary regime over ≈ 10 snapshots spanning

the last 5 turnover times.

The simulations can logically be split into three groups

– see Table 1 for a detailed overview of simulation input

parameters4 and resulting statistics in the stationary

regime. All simulations are identified as N### k# TYPE

with the first ### block corresponding to the resolution

in (linear) number of grid cells, the k# block to the char-

acteristic forcing scale, and TYPE to the simulation type.

For example, N512 k2 ILES is an implicit large eddy sim-

ulation (ILES) using a grid with 5123 cells and a forcing

profile that peaks at kf = 2.

The first group consist of five identical simulations

(driven at the largest scales kf = 2) that only vary in

their resolution ranging from 1283 to 2,0483 cells. These

simulation were conducted with K-Athena. They in-

clude no explicit dissipation and solely rely on numerical

dissipation, i.e., they are ILES. We refer to this group

as the one with “varying dynamical range”.

The second group consists of three simulations with

“constant dynamical range” but varying number of grid

cells. More specifically, we again use K-Athena to con-

duct ILES but change the characteristic forcing scale

4 A sample input parameter file, athinput.fmturb.N1024 k2 DNS,
is contained is the supplemental material.

https://gitlab.com/pgrete/kathena
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Table 1. Overview of the simulation parameters and properties in the stationary regime analyzed in this paper. For the ILES
the viscous, ν, and resistive, η, coefficients are the result of the fitting procedure described in Sec. 4. Re and Rm are the integral
scale (Lint,U) kinetic and magnetic Reynolds numbers. Angular brackets denote the temporal mean.

Id kf ν[10−4] η[10−4] 〈Ms〉 〈Ma〉 〈βp〉 kd Lint,U 〈Re〉 〈Rm〉 〈Pm〉
N128 k2 ILES 2 2.78 2.66 0.57(1) 5.2(3) 150(12) 25 0.35 717 752 1.0

N256 k2 ILES 2 1.23 0.98 0.557(7) 4.6(2) 122(9) 42 0.34 1546 1943 1.3

N512 k2 ILES 2 0.53 0.36 0.54(1) 3.4(1) 75.0(2.9) 70 0.33 3389 4983 1.5

N1024 k2 ILES 2 0.23 0.15 0.55(2) 3.2(2) 63.6(2.5) 140 0.33 8030 12147 1.5

N2048 k2 ILES 2 0.10 0.06 0.551(5) 2.86(4) 53.4(7) 236 0.32 18571 27677 1.5

N1024 k4 ILES 4 0.27 0.19 0.598(5) 3.50(6) 63.6(1.6) 140 0.21 4688 6710 1.4

N2048 k8 ILES 8 – – 0.562(3) 3.31(3) 64.0(1.5) 280 0.1 – – –

N512 k2 aDNS 2 1.20 0.98 0.561(5) 5.1(1) 151(5) 35 0.36 1421 1768 1.2

N1024 k2 DNS 2 1.20 0.98 0.59(2) 6.0(5) 190(10) 42 0.35 1662 2036 1.2

N1024 k2 aDNS 2 0.25 0.25 0.414(8) 4.5(3) 221(18) 70 0.38 4603 5150 1.1

with resolution so that the scale separation remains con-

stant, i.e., the 5123 simulation is driven at kf = 2, the

1,0243 simulation at kf = 4, and the 2,0483 simulation

at kf = 8.

Finally, the third group consists of three additional

simulations that include explicit viscosity and resistiv-

ity. The viscous and resistive coefficients are chosen to

match the effective numerical dissipative coefficients and

the simulation identifiers specify either DNS or aDNS (“al-

most” direct numerical simulation) as type, see Sec. 4

for details.

We post-process all simulations using the shell-to-shell

energy transfer analysis presented in Grete et al. (2017)

and extend it here to also account for energy transfer by

viscous and resisitive dissipation.5 The basic framework

is an extension of Alexakis et al. (2005) to the compress-

ible regime, see also Dar et al. (2001); Domaradzki et al.

(2010); Mininni (2011); Verma (2019); Yang (2019) and

references therein. This kind of energy transfer analysis

allows detailed quantification of the energy transfer from

a source (some energy budget at some spatial scale Q)

to a sink (some budget at some scale K) via a mediating

process.

The energy transfers6 are generally denoted by

TXY(Q,K) with X,Y ∈ {U,B} (1)

5 The framework is available at https://github.com/pgrete/
energy-transfer-analysis and commit 59b36a7 was used here.

6 In general, the definition of the energy transfer terms is not
unique; for details and discussion of physical interpretation of
the ones chosen in this paper, see Grete et al. (2017).

indicating energy transfer (for T > 0) from shell Q of

energy budget X to shell K of energy budget Y. In

this paper, U and B refer to the kinetic and magnetic

energy budgets, respectively. More specifically, the en-

ergy transfers for kinetic-to-kinetic (and magnetic-to-

magnetic) transfers via advection and compression (typ-

ically associated with energy cascades) are

TUU(Q,K) = −
∫

wK · (u · ∇)wQ +
1

2
wK ·wQ∇ · udx

(2)

TBB(Q,K) = −
∫

BK · (u · ∇)BQ +
1

2
BK ·BQ∇ · udx

(3)

where we use the mass-weighted velocity w =
√
ρu en-

suring that the spectral kinetic energy density based

on 1
2w

2 is positive definite (Kida & Orszag 1990).

The magnetic-to-kinetic (and kinetic-to-magnetic) en-

ergy transfer via magnetic tension are

TBUT(Q,K) =

∫
wK · (vA · ∇)BQdx (4)

TUBT(Q,K) =

∫
BK · ∇ ·

(
vA ⊗wQ

)
dx (5)

where vA is the Alfvén velocity. The magnetic-to-kinetic

(and kinetic-to-magnetic) energy transfer via magnetic

pressure are

TBUP(Q,K) = −
∫

wK

2
√
ρ
· ∇
(
B ·BQ

)
dx (6)

TUBP(Q,K) = −
∫

BK ·B∇ ·
(

wQ

2
√
ρ

)
dx , (7)

https://github.com/pgrete/energy-transfer-analysis
https://github.com/pgrete/energy-transfer-analysis
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the internal-to-kinetic energy transfer via the pressure

gradient (i.e., density fluctuations for the isothermal

simulations used here7) is

TPU(Q,K) = −
∫

1
√
ρ
wK · ∇pQdx , (8)

and the energy input from the mechanical forcing to the

kinetic energy budget is given by

TFU(Q,K) = −
∫
√
ρwK · aQdx . (9)

Finally, in this paper we expand the original, ideal

framework with

TνU(Q,K) = ν

∫
√
ρwK ·

(
∆uQ +

1

3
∇
(
∇ · uQ

))
dx

(10)

TηB(Q,K) = η

∫
BK ·∆BQdx

(11)

for viscous and resistive dissipation with coefficients ν

and η, respectively.

Superscripts K and Q indicate shell-filtered quantities,

e.g., wK is the velocity field on scales K or BQ is the

magnetic field on scales Q. The scales are separated by

a sharp spectral filter in Fourier space with logarithmic

spacing8. The bounds are given by 1 and 2n/4+2 for

n ∈ {−1, 0, 1, . . . , 36}. Shells (uppercase, e.g., K) and

wavenumbers (lowercase, e.g., k) obey a direct mapping,

i.e., K = 24 corresponds to k ∈ (22.6, 26.9].

From the individual transfer terms, several aggregated

quantities can be derived that are often used in turbu-

lence studies. This includes the cross-scale fluxes that

are generically given by

ΠX<

Y>(k) =
∑
Q≤k

∑
K>k

TXY(Q,K) (12)

and quantify how much energy is transferred across a

reference scale k from all scales larger than k in budget X

to all scales smaller than k in budget Y, cf., center panel

in Fig. 1. For ease of comparison, the energy transfer

terms are typically normalized so that the total cross-

scale flux (including all terms) is unity on intermediate

(inertial) scales, which we also follow in this paper.

7 For a detailed analysis including the internal energy budget see
Schmidt & Grete (2019) or Grete et al. (2020) for non-isothermal
statistics.

8 In the subsonic regime of the simulations presented in this paper
density variations are limited. Therefore, differences between
shell-filtered transfers and transfers calculated using a coarse-
graining approach as in large eddy simulations are expected to
be negligible (Aluie 2013; Yang et al. 2016; Zhao & Aluie 2018).

Similarly, the rate of change in energy at some

scale (here, in some energy bin K) from a given term

TXY(Q,K) can be computed from

ĖXY(K) =
∑
Q

TXY(Q,K) . (13)

The total rate of change (including all terms) vanishes

on average for stationary turbulence by construction, cf.,

bottom panel of Fig. 1.

3. PROPERTIES OF MHD TURBULENCE IN

IMPLICIT LARGE EDDY SIMULATIONS

The (temporal) mean kinetic and magnetic energy

spectra for ILES with fixed forcing scale, kf = 2, but

increasing resolution (1283 to 2,0483) are shown in the

left panels of Fig. 2. This plot can be interpreted as a

prototypical numerical convergence plot as all parame-

ters except for the number of grid cells (or ∆x) are kept

constant. The large-scale kinetic energy spectra of all

simulations are effectively identical. At the same time,

an increased resolution (smaller ∆x) results in an ex-

tended range where the kinetic energy spectrum follows

a power law. The latter scales with ≈ k−4/3, which

has been observed before (Haugen et al. 2004; Aluie &

Eyink 2010; Moll et al. 2011; Teaca et al. 2011; Porter

et al. 2015; Grete et al. 2017; Bian & Aluie 2019) and

that we attribute to magnetic tension being dominant

on those scales (Grete et al. 2021). While the magnetic

energy spectrum also becomes more and more extended

with larger dynamical range, no power-law regime is ob-

served even at the highest resolution.

At first glance, this extension of the spectra towards

smaller scales with increasing resolution may be simply

interpreted as an extension of the overall dynamics on

smaller scales with no impact on the intermediate or

larger scales.

An alternative illustration of this same data is shown

in the center panels of Fig. 2, which show the same

spectra as in the left panels but with the x-axis nor-

malized to the peak dissipation scale (cf., bottom panel

of the sketch in Fig. 1) instead of the forcing scale. Both

kinetic and magnetic energy spectra are well-aligned

across all simulations on scales k & kd but are nei-

ther “converged” on intermediate nor large scales, that

is k . kd. That the small-scale behavior is well-aligned

is explored further in the data shown in the right-hand

panels of Fig. 2, which again show the mean kinetic

and magnetic energy spectra for ILES with varying res-

olution (5123, 1,0243, and 2,0483 grid cells), but with

the forcing scale adjusted accordingly from kf = 2, to

kf = 4, to kf = 8, respectively. As a result, the dynam-

ical range given by the separation between the energy
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Figure 2. Mean kinetic (top) and magnetic (bottom) energy spectra in the stationary regime for simulations with varying
dynamical range (left panels with the x-axis scaled to the forcing scale, kf , and center panels scaled to the peak dissipative scale,
kd) and fixed dynamical range but varying resolution (right). The left and right spectra are normalized to the mean energy
between 1.5kf ≤ k ≤ 6kf and the center spectra are normalized to unity at kd. The (barely visible) shaded regions show the
standard deviation of the spectra over time.

injection scale and the (numerical) dissipation scale is

kept constant in these simulations. Both the kinetic

and magnetic energy spectra are effectively identical for

all simulations across the shared scales (smaller than the

forcing scale). The data of the right-hand panel of Fig. 2

demonstrate one of the key results of this work: the sep-

aration between the energy injection scale and the dissi-

pation scale, which we term the dynamical range, rather

than the number of grid points or the grid spacing, ∆x,

determines the spectral energy distribution within the

turbulence.

The next step in our analysis involves understanding
how the dynamical range determines the physical mech-

anisms by which energy is transferred across scales in the

turbulence. The data of the left-hand panels of Fig. 3

show the key channels, i.e., the kinetic, ΠU<

U> , and mag-

netic, ΠB<

B> , cascades and the magnetic to kinetic cross-

scale flux via magnetic tension, ΠB<,T
U> and vice versa,

ΠU<,T
B> , for the simulations with fixed forcing at kf = 2

and varying dynamical range. The data of this figure

show that no individual cross-scale flux is constant over

any range of scales in any simulation, in stark contrast

to (incompressible) hydrodynamic turbulence where the

kinetic cascade flux is constant in the inertial range. For

the ILES-based MHD turbulence calculations shown in

left-hand panels of Fig. 3, this applies only to the total

flux, i.e., the one taking all terms into account simulta-

neously (cf., bottom left panel of Fig. 3).

Next, all cross-scale fluxes vary with number of grid

cells and the dominant channel becomes a function of

scale and dynamical range. For example, at the lowest

resolution the kinetic cascade cross-scale flux is a con-

tinuously decreasing function with smaller scales (red

dotted line in top left panel of Fig. 3) whereas at resolu-

tions & 1,0243 cells the cross-scale flux exhibits a local

peak around ≈ 0.8kd before declining again and even

reaching negative values (i.e., a flux of energy to larger

scales) on intermediate scales. Similarly, the kinetic to

magnetic cross-scale flux via magnetic tension peaks at

≈ 0.5 at 1283 and with increasing resolution the peak

becomes more dominant and shifts towards larger scales

following the forcing scale. In other words, at the low-

est resolution about one half of the cross-scale flux from

the large-scale kinetic budget goes to each the kinetic

and magnetic budget on smaller scales whereas at the

highest resolution ≈ 80% end up on smaller magnetic

scales with diminishing contributions to the kinetic en-

ergy budget on smaller scales.

For the simulations with identical dynamical range

the individual cross-scale fluxes are also a function of

wavenumber but they are identical between the simula-

tions with different ∆x, see right panels in Fig. 3. This

result is similar to that obtained for the energy spectra

and indicates that the physics of energy-transfer is deter-

mined by the dynamical range, rather than the number

of grid points for ILES calculations.
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Figure 3. Mean cross-scale fluxes of the simulations with
varying dynamical range (left) and identical range but vary-
ing resolution (right) for, from top to bottom, kinetic to ki-
netic, magnetic to magnetic, magnetic to kinetic via mag-
netic tension, kinetic to magnetic via magnetic tension, and
all to all (total) energy fluxes.

4. COMPARING MAGNETOHYDROYNAMIC ILES

AND DNS CALCULATIONS: PROPERTIES OF

NUMERICAL DISSIPATION

In the previous section, we have seen that both the

spectral energy distribution and the mechanisms by

which energy is transferred between scales in ILES calcu-

lations of magnetohydrodynamic turbulence are deter-

mined by the dynamical range of the calculation, rather

than (e.g.) the number of grid points. In this section,

we analyze the properties of the numerical dissipation in

these calculations and compare the results of this anal-

ysis to an equivalent set of DNS calculations.

0.00

0.05

0.10

E(
k)

N256_k2_ILES

0.00

0.05

0.10
E(

k)
N512_k2_aDNS

All data
All data excl. diss. (residual)
Fit of U &  B to residual
All data with fit

10 1 100 101

wavenumber k/kd

0.00

0.05

0.10

E(
k)

N1024_k2_DNS

Figure 4. Fitting the rate of change in energy from the
dissipative transfer terms, TνU and TηB, to the residual in
an ILES (top), an almost resolved DNS (center) and a DNS
(bottom). For the DNS the residual is calculated from all
fluxes excluding the dissipative terms whereas in the ILES
the residual is a true residual from the analysis.

The scale-wise rate of change in the kinetic and mag-

netic energy budget are given by (see also, e.g. Simon
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et al. 2009; Salvesen et al. 2014):

∂tE
K
kin =

∫ ∑
Q

(
TUU + TBUT + TBUP+

TPU + TFU + TνU
)

dx +DU and

(14)

∂tE
K
mag =

∫ ∑
Q

(
TBB + TUBT + TUBP + TηB

)
dx +DB .

(15)

For stationary turbulence ∂tE
K
kin = ∂tE

K
mag = 0 must

hold on average by definition as the system is in global

balance. In ILES the dissipative terms, TνU and TηB,

are absent and D represents the numerical dissipation

in the kinetic and magnetic energy. By contrast, the

dissipative scales (and, thus, TνU and TηB) are fully re-

solved in DNS and D = 0. This is illustrated in Fig. 4.

The blue line in each panel shows the temporal mean to-

tal rate of change (∂tE
K
kin + ∂tE

K
mag) for an ILES (top),

and almost resolved DNS (center) and a DNS (bottom).

As expected it vanishes for the DNS as all transfers are

explicitly accounted for and exhibits a pronounced peak

reaching ≈ 0.1 in the ILES as numerical dissipation is

not explicitly accounted for. In the center panel it still

reaches ≈ 0.025 despite the dissipative terms being in-

cluded in the simulation. This indicates that TνU and

TηB are not fully resolved and a small amount of nu-

merical dissipation remains. Therefore, we identify this

simulation as “almost” DNS.

10 3 10 2

cell width x

10 5

10 4

di
ss

. c
oe

ffi
cie

nt

fit: 1.22
x

fit: 1.34
x

Figure 5. Calculated effective ν and η in the ILES with
large-scale forcing and varying resolution (cell width ∆x) and
power-law fits to the data.

In addition to determining if a simulation is resolved,

this analysis also allows estimation of the numerical dis-

sipative coefficients by fitting to the residuals of the net

rate of change. More specifically, we calculate both the

scale-wise residual numerical dissipation, e.g.,

DB(K) = −
∫ ∑

Q

(
TBB + TUBT + TUBP

)
dx (16)

and the expected resistive dissipation
∫ ∑

Q

(
TηB

)
dx

and eventually apply a linear least square method to

determine the effective η; we apply the same method-

ology to compute the viscosity as well. The joint (ki-

netic plus magnetic) residual is shown as orange dashed

line in Fig. 4. For ILES it is identical to the blue “all

data” line as the dissipative terms are only included in

the post-processing described here but not in the sim-

ulations themselves. For the two DNS calculations, we

specifically exclude the dissipative terms to calculate the

residual. This allows for a sanity check of the procedure

if the original coefficients included in the simulations can

be recovered. The result of the parameter estimation is

illustrated by the green lines in Fig. 4. The DNS coef-

ficients are recovered exactly (the green and orange line

are on top of each other) and for the ILESs we report

the results of the fitting in Table 1. In general, for the

ILES a significant fraction of the residual is accounted

for by the fit, cf., the red line in Fig. 4 that shows the

overall residual including the dissipative terms with the

estimated coefficient. However, the peak of the origi-

nal residual (blue/orange) and the dissipative terms are

not aligned on the x-axis. This mismatch in alignment

cannot be fixed by the fitting as it only scales the data

in the y-direction. This indicates that the numerical

dissipation of the scheme employed in the simulations

here largely acts similar to standard viscous and resis-

tive dissipation but contains some small level of higher-

order terms, that act to push the maximum numerical

dissipation to smaller scales. The calculated effective ν

and η for the ILES with large-scale forcing and varying

resolution (cell width ∆x) are shown in Fig. 5. Both

coefficients follow power-laws that scale with ν ∝ ∆1.22
x

and η ∝ ∆1.34
x , respectively.

The three DNS presented in the preceding subsec-

tion were not chosen at random. In fact, we first ana-

lyzed the existing N256 k2 ILES and N512 k2 ILES sim-

ulations to determine the effective viscous and resis-

tive coefficients. Afterwards, we conducted the three

DNS using those coefficients but at higher resolutions.

More specifically, we used the effective dissipative coeffi-

cients of the N256 k2 ILES simulation for N512 k2 aDNS

and N512 k2 DNS, and the effective coefficients from

N512 k2 ILES for N1024 k2 aDNS. Fig. 6 illustrates the

cross-scale fluxes of the two ILES along the three DNS.

Again, the results from simulations with the same dy-

namical range fall on top of each other irrespective of

whether the dissipative processes are included explicitly
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Figure 6. Mean (temporal) cross-scale fluxes of DNS (with varying η and ν) and ILES (with varying resolution).

or implicitly. This naturally includes the scale-wise vari-

ations observed and discussed for ILES previously, i.e.,

there exists no range over which the individual cross-

scale fluxes are constant and the physics of the turbu-

lence is independent of the numerical methodology em-

ployed. In other words, the effective numerical dissipa-

tion utilized in the ILES calculations presented here are

well suited to approximate DNS turbulence simulations.

From this, we conclude that the scale-dependent cross-

scale fluxes are not tied to the numerical dissipation uti-

lized in the ILES results presented here and are consis-

tent with the scale-dependent cross-scale fluxes derived

from higher-resolution DNS calculations at a specified

set of (magnetic) Reynolds numbers. In other words,

ILES performed at a given dynamical range provides a

converged representation of DNS for a specific choice of

energy injection scale, and dissipation coefficients (e.g.

magnetic Reynolds number). If the dynamical range of

an ILES calculation is varied (e.g. increased by adding

additional grid points), then the DNS calculation that

this represents also changes, through (e.g.) an increased

(magnetic) Reynolds number.

5. SUMMARY, DISCUSSION & CONCLUSIONS

Motivated by earlier results on the different scaling of

kinetic and magnetic energy spectra in MHD turbulence

(Grete et al. 2021), we applied a shell-to-shell analysis

framework to simulations in the same sub-sonic, super-

Alfvénic driven MHD turbulence regime but with vary-

ing dynamical range and with or without explicit viscos-

ity and resistivity. Simulations with explicit dissipative

terms are direct numerical simulations (DNS) and simu-

lations that rely on the numerical method for dissipation

are so-called implicit large eddy simulation (ILES). We

conducted a range of ILES calculations where we varied

the resolution (from 1283 to 2,0483 grid cells) and the

ratio between the energy injection scale and the dissi-

pation scale (the “dynamical range”). The key results

from this study can be summarized as follows: Our key

results are:

• The dynamical range, rather than the number of

grid points or the grid spacing, ∆x, determines

both the spectral energy distribution and the

physics of energy transfer between scales within

ILES-based MHD turbulence.

• Cross-scale energy fluxes in ILES-based MHD tur-

bulence vary both with scale and dynamical range

– even in the “inertial range” and in contrast to

hydrodynamic turbulence.

• The properties of numerical dissipation deter-

mined by the energy transfer analysis frame-

work within ILES-based MHD turbulence is well-

modeled by standard visco-resistive dissipation

term on a scale-wise basis in the steady state.

For the ILES-models presented here, the effec-

tive numerical viscosity and resistivity scale with

ν ∝ ∆1.22
x and η ∝ ∆1.34

x , respectively.

• DNS and ILES give effectively identical results at

the same (effective) Reynolds numbers in terms of

the physics of energy transfer between scales.

These results both have practical implications as well as

raise important questions. First, as previously stated,

ILES performed at a given dynamical range provides a

converged representation of DNS for a specific choice of

energy injection scale, and dissipation coefficients (e.g.

magnetic Reynolds number). Studying the variation of

ILES-based models of MHD turbulence with changing

dynamic range is equivalent to studying the variation of

a set of DNS models with changing (magnetic) Reynolds

number, at least for the magnetic field topology con-

sidered here. Beyond this, our results give rise to the

the question of whether an asymptotic regime in MHD

turbulence exists, and, if so, what are its properties?

While in hydrodynamic turbulence an extended dynam-

ical range simply leads to an extended power-law scaling

in the kinetic energy spectrum and constant energy flux,

we have not observed this behavior in the MHD tur-

bulence simulations presented here. Even at the high-

est resolution with the largest dynamical range, both
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spectra and cross-scale fluxes still evolve and exhibit

different (scale-wise) behavior compared to simulations

with smaller dynamical range. MHD turbulence simu-

lations are typically conducted with a dynamical range

corresponding to Reynolds numbers of a few thousand

whereas Reynolds numbers in many natural systems are

expected to be significantly larger – especially in astro-

physics. As an example of such behavior, in the ILES

calculations with identical large-scale forcing presented

here, the kinetic cascade cross-scale flux changes be-

havior between resolutions of ≤ 2563 and ≥ 5123 grid

cells. The former fluxes are continuously decreasing

functions of scale whereas the latter contain an inflec-

tion point, suggesting that the physics of turbulence at

low Reynolds numbers is markedly different from that

at high Reynolds number.

The observed scaling of ν ∝ ∆1.22
x has been reported

before in forced, isotropic, hydrodynamic turbulence

simulations, see Sec. III.A.2. in Zhou et al. (2014). Their

estimation is based on large-scale quantities and as-

sumes a developed inertial range. Therefore, it is en-

couraging that the procedure presented in this paper

yields the same result without a clear scale separation

(cf., the N128 k2 ILES simulation). Interestingly, Zhou

et al. (2014) employed a spatially fourth-order accurate

scheme contrary to the second-order accurate scheme

here. At the same time, Salvesen et al. (2014) report

lower effective viscosities and resistivities from simula-

tions employing a spatially third-order scheme (but oth-

erwise identical to the one here) using a procedure based

on manually matching energy spectra between ILES and

DNS. This motivates a more detailed study of the im-

portance of (or lack thereof) the numerical scheme on

both the effective dissipative coefficient values as well as

their scaling.

Our results cover the sub-sonic, super-Alfvénic regime

at constant magnetic Prandtl number of approximately

Pm ≈ 1, i.e., the ratio of viscosity to resistivity is fixed,

along with a specific choice of magnetic field topology

and driving mechanism From both a physical and a the-

oretical point of view, a larger parameter space covering

the Pm � 1 and Pm � 1 should be explored in the

future to evaluate how the energy dynamics change and

if there are indications of asymptotic behavior in those

regimes. This similarly applies to systems with differ-

ent Mach numbers, as (for example), simulations per-

formed at different Mach numbers (while maintaining

a constant isothermal sound speed as in the simulations

here) would directly translate to varying Reynolds num-

ber. While we have used dynamical range and Reynolds

number interchangeably in the text, this only applies to

a set of simulations with constant characteristic veloc-

ity. However, we note that the physics of energy energy

transfer also varies with Mach number, (see, e.g., Grete

et al. 2017, for a side-by-side comparison of a sub- and

supersonic MHD case). Therefore, a more complex rela-

tion between dynamical range and Reynolds number is

expected (particularly in the supersonic regime), which

should be explored in subsequent work.

While the determination of the effective numerical vis-

cosity and resistivity was accurate for the simulations

presented here, additional simulations are required to

evaluate the applicability of the method, for example, in

the highly supersonic regime where the impact of the nu-

merical method (such as nonlinear limiters) is expected

to be more pronounced. In addition to varying the Mach

number of the flow, the nature of the driving mecha-

nism should be explored. In particular, systems that

are driven on all scales, such as accretion disks, where

Keplerian shear can, in principle, inject energy into tur-

bulence arising from the magnetorotational instability

(Balbus & Hawley 1998) down to the viscous dissipa-

tion scale, could exhibit markedly different properties to

the energy injection mechanisms studied here (see, e.g.

Workman & Armitage 2008, for discussion of potential

issues here). Finally, different magnetic field topologies

that vary both the amount of net flux threading the

simulation domain and the magnetic helicity should be

considered; such magnetic field configurations could in-

fluence the physics of energy transfer and lead to (e.g.)

inverse transfer of magnetic energy between scales, such

as has been observed in recent experimental and com-

putational work Ruiz et al. (2022).
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2005). mpi4py-fft (Dalcin et al. 2019).

REFERENCES

Alexakis, A., Mininni, P. D., & Pouquet, A. 2005, Phys.

Rev. E, 72, 046301, doi: 10.1103/PhysRevE.72.046301

Aluie, H. 2013, Physica D Nonlinear Phenomena, 247, 54,

doi: 10.1016/j.physd.2012.12.009

Aluie, H., & Eyink, G. L. 2010, Phys. Rev. Lett., 104,

081101, doi: 10.1103/PhysRevLett.104.081101

Balbus, S. 2022, Nature Astronomy, 6, 173,

doi: 10.1038/s41550-022-01608-z

Balbus, S. A., & Hawley, J. F. 1998, Reviews of Modern

Physics, 70, 1, doi: 10.1103/RevModPhys.70.1

Beresnyak, A. 2019, Living Reviews in Computational

Astrophysics, 5, 2, doi: 10.1007/s41115-019-0005-8

Bian, X., & Aluie, H. 2019, Phys. Rev. Lett., 122, 135101,

doi: 10.1103/PhysRevLett.122.135101

Boldyrev, S., Mason, J., & Cattaneo, F. 2009, The

Astrophysical Journal, 699, L39,

doi: 10.1088/0004-637x/699/1/l39
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